Uso da tafonomia em reconstruções paleoambientais

Antonio Liccardo

Abordagem

Definições e processos

Análise Tafonômica Básica

Obtenção, descrição e interpretação de dados

TAFONOMIA

Estudo sistemático da evolução de fósseis, desde a morte dos indivíduos até a sua final incorporação e transformações dentro da rocha que os contém.

Grego

"Leis do Sepultamento"

tafos nomos Sepultamento leis

"estudo das leis que governam a transição dos restos orgânicos da biosfera para a litosfera"

Efremov (1940)

O estudo tafonômico envolve dois momentos principais da evolução do fóssil

Bioestratonomia

Fossildiagênese

o primeiro momento é antecedente ao soterramento e designado **bioestratonomia**: refere-se à causalidade da morte do fóssil, à forma de decomposição e de preservação de partes duras e moles, ao seu transporte e deposição;

assim, o fóssil pode ter sido depositado *in situ* ou **transportado** por rios, correntes marinhas, etc.. sofrendo quebras e misturas com fósseis de outros ambientes, diferentemente da tendência de quando depositado *in situ*, no seu ambiente de vida;

Fóssildiagênese

o segundo momento é relacionado aos processos diagenéticos e/ou deformacionais, como silicificação, piritização, carbonatação, deformações...

Divisões da Tafonomia

Bioestratinomia

Diagênese dos fósseis

MORTE

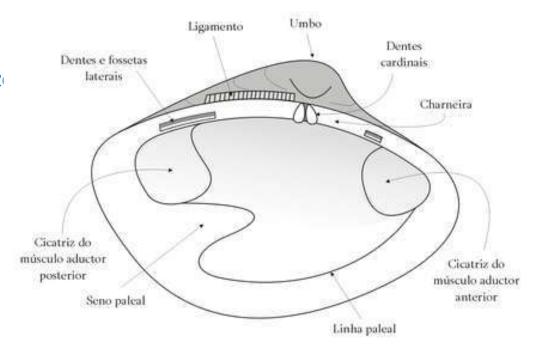
SOTERRAMENTO

COLETA

causa da morte, necrólise, desarticulação, transporte e soterramento final. compactação, cimentação, permineralização, substituição...

Objetos de estudo

Vertebrados Invertebrados Vegetais



Metodologia de estudo Seleção de tamanho Orientação Geometria

Morfologia funcional Atualismo

Modo de vida

Termos sedimentológic Autóctone Parautóctone Alóctone Área Fonte

ANÁLISE TAFONÔMICA BÁSICA

- 1) Morte
- 2) Necrólise
- 3) Desarticulação
- 4) Transporte
- 5) Soterramento final
- 6) Diagênese

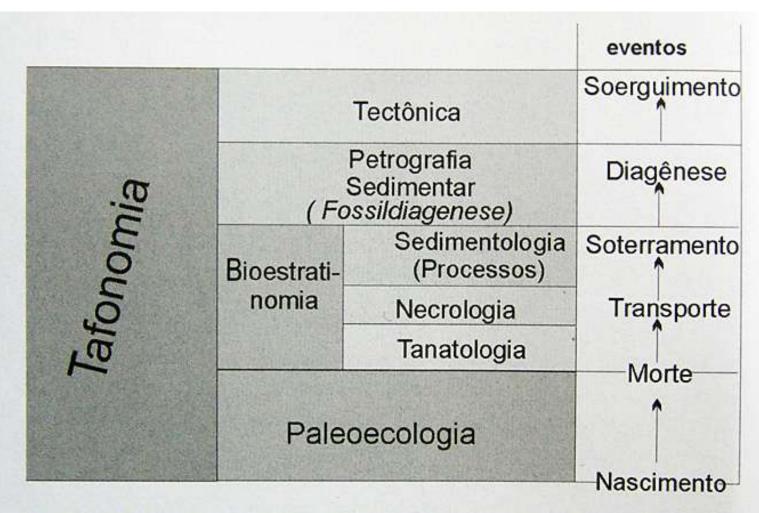
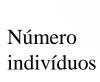
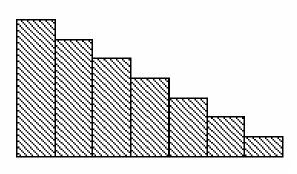


Figura 1 - Relação entre a tafonomia, suas subdivisões e os eventos responsáveis pela origem das concentrações fossilíferas (Simões e Holz, 2000).

1) MORTE

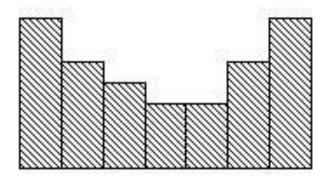
Tipos de Morte

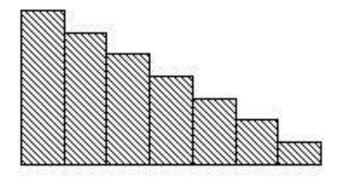

a) Seletiva


b) Catastrófica

- faixas de idade na população (mais jovens e mais velhos)
- envelhecimento, doenças e predação.
- atinge grande parte da população indistintamente
- evento de grande magnitude (enchentes, tempestades, secas)

Estrutura populacional original (hipotética)





idades

Morte Seletiva

Morte Catastrófica

2) NECRÓLISE

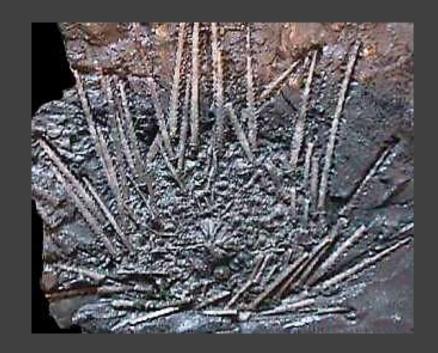
"Decomposição dos tecidos moles de conexão, após a morte de um organismo"

Presença de oxigênio

Velocidade de decaimento dos tecidos moles = Tempo que ele permanecerá articulado após a morte

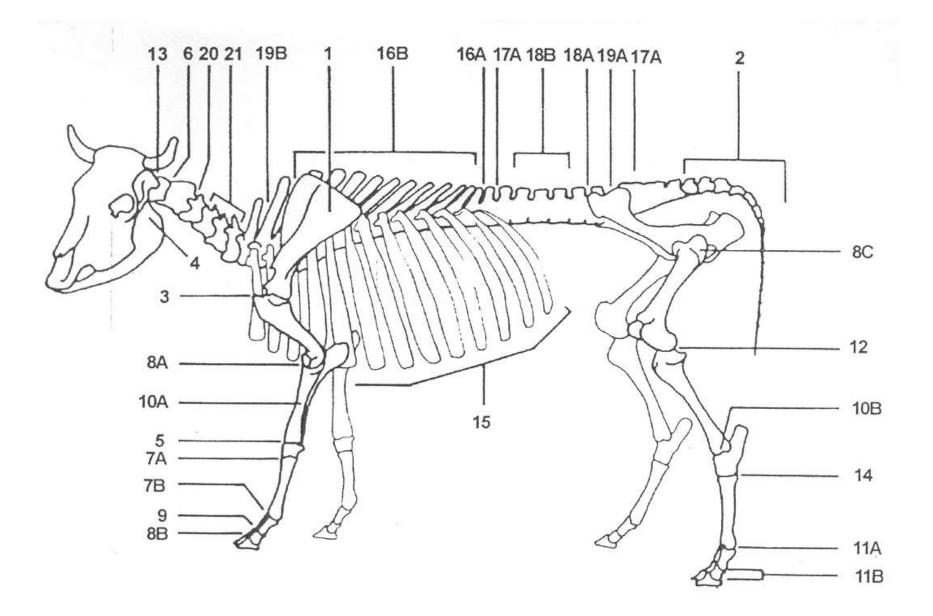
3) DESARTICULAÇÃO

Depende da anatomia básica do organismo estudado


< Energia

Soterramento rápido

Anóxia


> Articulação

Pigídios de trilobitas, Ordoviciano (Canadá)

Exemplo de experimento realizado sobre a desarticulação de insetos

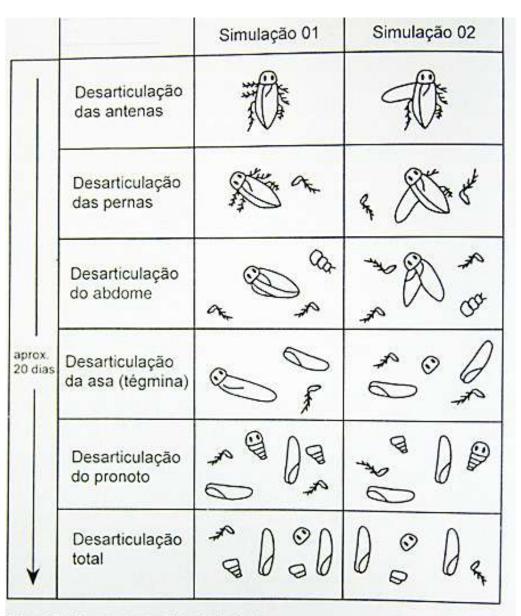
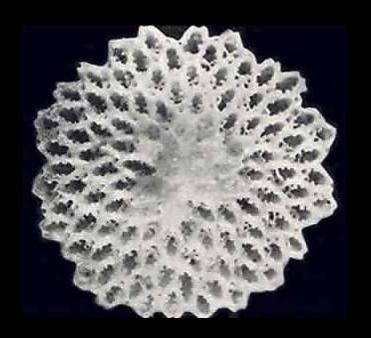
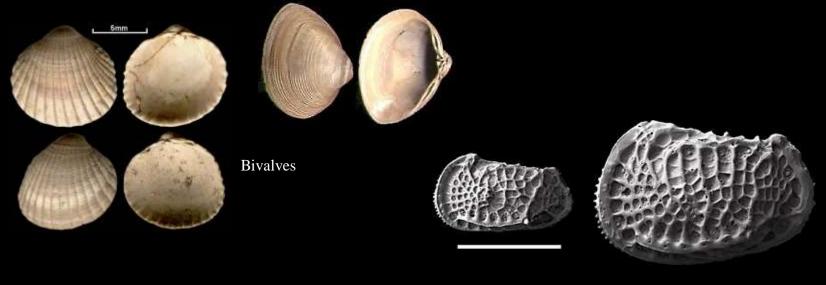



Figura 67 - Experimento de tafonomia de insetos.

Tipos de esqueleto de invertebrados

- a) Maciços ou arborescentes: Corais e briozoários
- b) Bivalve: bivalves, braquiópodes, ostracodes e conchostráceos
- c) Univalve: Gastrópodes, cefalópodes e escafópodes
- d) Multielemento: equinodermos

a) Maciços ou arborescentes: Corais e briozoários



b) Bivalve: bivalves, braquiópodes, ostracodes e conchostráceos

Ostracodes

Braquiópode

Conchostráceos

c) Univalve: Gastrópodes, cefalópodes e escafópodes;

Gastrópode em ambiente marinho

d) Multielemento equinodermes

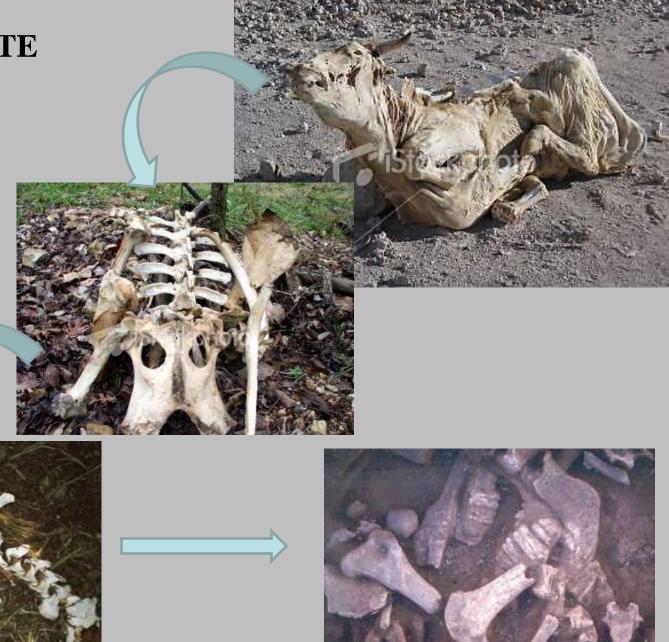


TABELA 1 Classificação dos diferentes tipos de esqueleto de invertebrados, segundo Speyer e Brett (1988).

Táxon	Tipo de esqueleto				
	Maciço	Arborescente	Univalve	Bivalve	Multielemento
Corais Rugosa Tabulata	∇ ∇	V V			
Briozoários Trepostomata Cryptostomata	∇	∇ ∇			
Braquiópodes Inarticulados Articulados			∇ ∇		
Moluscos Pelecípodes Gastrópodes Cefalópodes Escafópodes				∇ ∇ ∇	
Artrópodes Trilobitas Ostracodes Conchostráceos Insetos Filocarídeos			∇ ∇		∇ ∇ ∇
Equinodermas Crinóides Blastóides Equinóides Ofiuróides					\(\nabla \)
Graptozoários		∇			

Área Fonte

diminuição da textura do sedimento

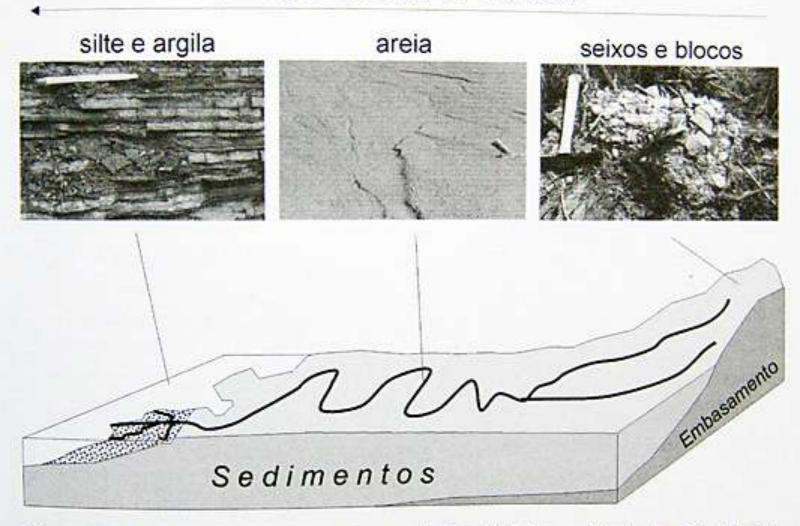
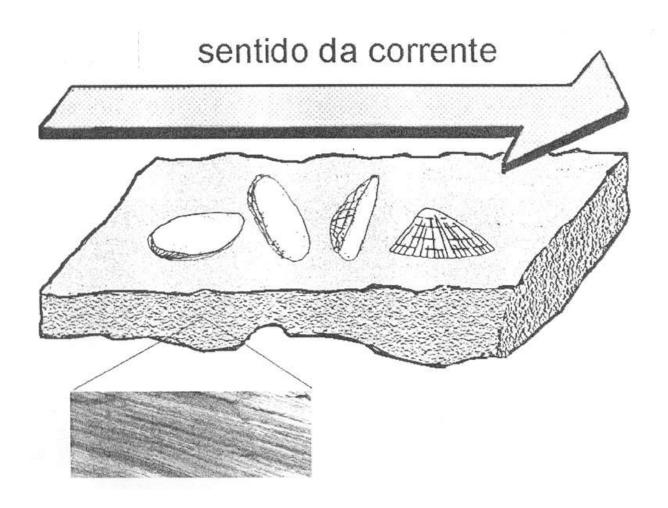
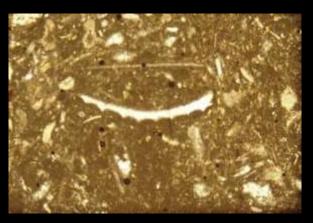
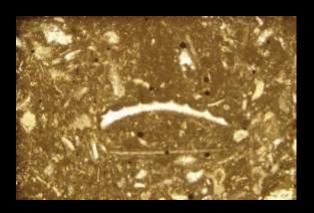


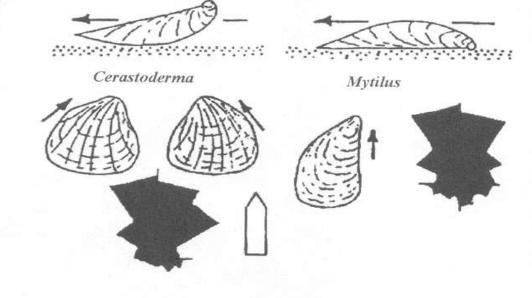
Figura 15 – Bloco diagrama mostrando de maneira simplificada o padrão textural dos depósitos sedimentares em relação ao distanciamento da área-fonte.

TRANSPORTE


Figura 20
Posição
de estabilidade
alcançada por
uma concha
sob ação
de correntes
de fundo
(redesenhado de
Ziegler, 1985).

- -Ausência de força horizontal
- Águas calmas (predação, bioturbação)



- Correntes tracionais

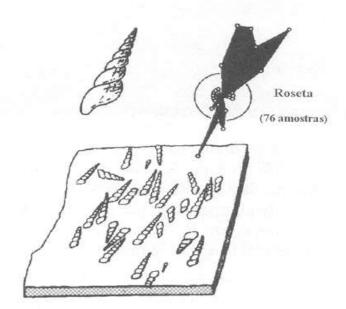
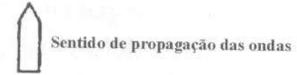
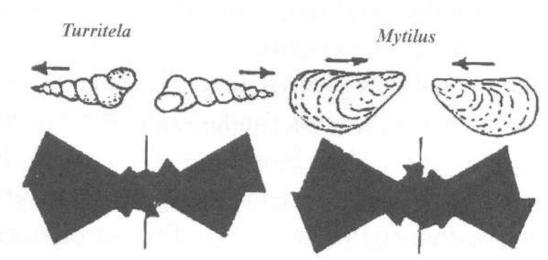

- Posição mais estável

Figura 37A
Posição
de estabilidade
assumida
por conchas
sob fluxo
unidirecional
forte (Allen, 1990);

Fluxo unidirecional


Figura 37B
Alinhamento
de gastrópodes
Turritella
sob fluxo
unidirecional
(Seilacher, 1953);



Fluxo oscilatório (ondas)

ONDAS

Figura 37C
Orientação
bimodal
de bioclastos
sob fluxo
oscilatório
(Allen, 1990).

Fluxo oscilatório (ondas)

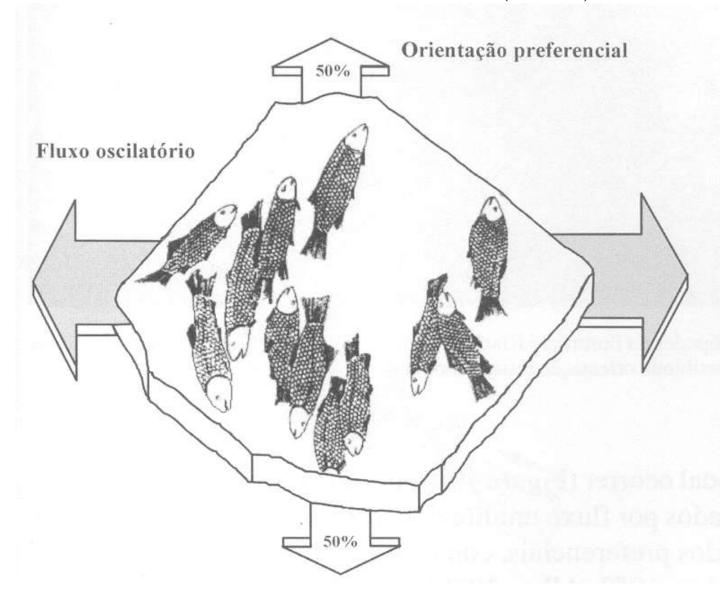
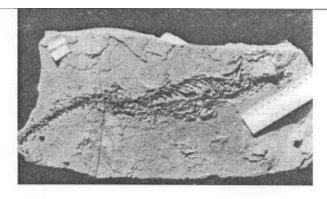



Figura 38
Alinhamento
de carcaças
de peixes
sob fluxo
oscilatório.
Notar
a bimodalidade
na orientação
dos corpos
de peixes
(Seilacher, 1953).

Classes tafonômicas de vertebrados

esqueletos com articulação completa; todos os ossos em posição natural

CLASSE 2: Esqueletos parcialmente articulados

esqueletos ainda mantendo partes articuladas, mas com a maior parte dos ossos removida

CLASSE 3: ossos isolados

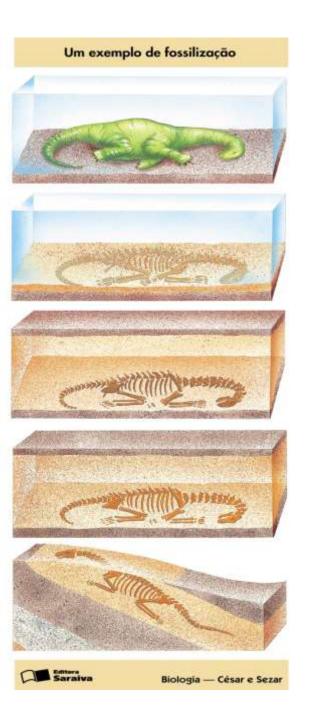
ossos totalmente desarticulados, consistindo de ossos inteiros (IIIA) e/ou fragmentados (IIIB).

5) SOTERRAMENTO FINAL

Passo decisivo para a preservação Condições especiais

O registro sedimentar é dominantemente episódico

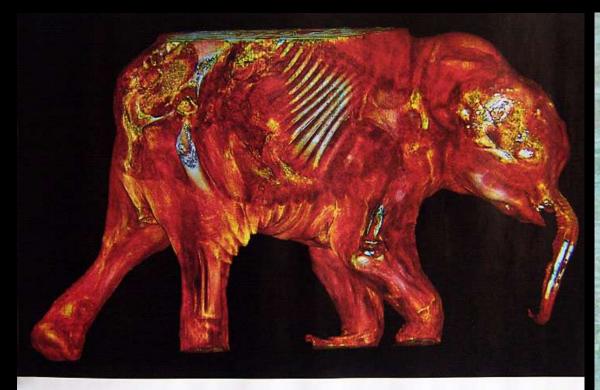
*Autóctone


*Alóctone

6) DIAGÊNESE (FOSSILIZAÇÃO)

a) Preservação total (partes duras e moles):

- b) Preservação sem alteração dos restos esqueléticos
- c) Preservação com alteração dos restos esqueléticos

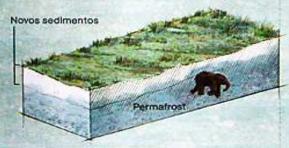


a) Preservação total

congelamento dessecação – ambiente árido preservação em âmbar

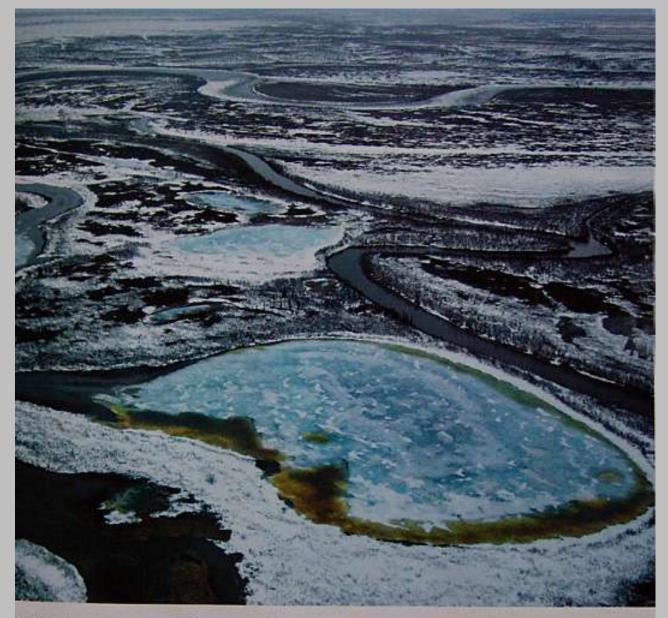
A tomografia proporcionou novos vislumbres da anatomia dos mamutes, além de pistas da causa da morte de Lyuba. Os sedimentos que bloquearam as passagens nasais da tromba (em branco) e também da boca, do esôfago e da traqueia indicam que ela deve ter morrido asfixiada ao ficar presa e afundar num lodaçal.

Excepcional estado de preservação de filhote de mamute em permafrost


LACRADA NO TEMPO

Como o paleontólogo Dan Fisher explica o estado de preservação de Lyuba

 Ao morrer ela afundou em uma mistura de lodo e argila úmidos que evitou seu contato com o oxigênio e os micróbios aeróbicos que destruiriam os tecidos moles.


- 2 Outros micróbios que produzem ácido láctico proliferam em seus tecidos. O ácido atua como conservante da carcaça.
- 3 O solo vira permafrost. O corpo desidrata e encolhe, ficando com metade do peso.

4 Em 2006, um rio erode uma ribanceira e solta o bloco de permafrost no qual está Lyuba. O bloco descongela. A correnteza leva o corpo a um banco de areia. O cheiro do ácido láctico espanta bichos carniceiros.

Aquecimento global tem fornecido importantes informações com o derretimento do gelo em regiões polares

No fim da primavera, os rios da península Yamal já estão descongelados. A subida das águas remove nacos de permafrost das margens. Quem vê a região "tem ideia de como era o mundo de Lyuba", diz o paleontólogo Dan Fisher. Embora a maioria das plantas seja diferente, a paisagem é semelhante à de 40 mil anos atrás.

b) Preservação sem alteração dos restos esqueléticos

Incrustação

quando substâncias trazidas pelas águas se infiltram no subsolo e se depositam à volta do animal ou planta, revestindo-o. Ex.animais que morrem em cavernas.

permineralização - silicificação

quando substâncias minerais são depositadas em cavidades de ossos ou troncos.

c) Preservação com alteração dos restos esqueléticos:

Recristalização

Modificação da estrutura do mineral original transformando em novo mineral. Ex. aragonita - calcita

Carbonificação

quando se dá perda de substâncias voláteis, restando apenas uma película de carbono. É mais frequente surgir em restos de seres vivos que contêm quitina, celulose ou queratina.

Molde

resulta do preenchimento interno das partes duras do ser vivo ou da moldagem da parte externa das partes duras.

Vestígios - icnofósseis

Como adquirir, descrever e interpretar dados em tafonomia

Orientação azimutal

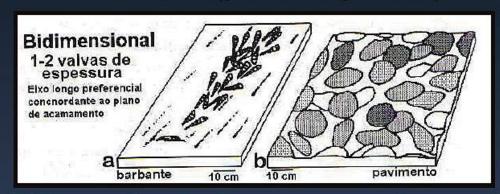
Topo e base

Blocos de rochas (distribuição de fósseis na matriz, orientação)

Seccionamento dos blocos (observação do grau de empacotamento, distribuição dos fósseis na matriz)

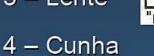
Descrição macroscópica para interpretação

Feições Estratigráficas

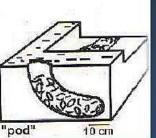

Feições Paleoecológicas

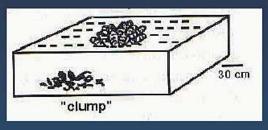
Feições Sedimentológicas

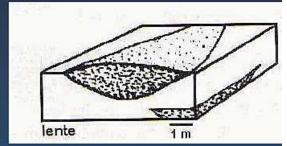
Feições Estratigráficas (geometria)

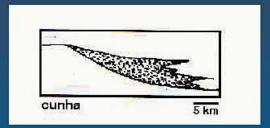

Concentrações Bidimensionais (pouco espessas)

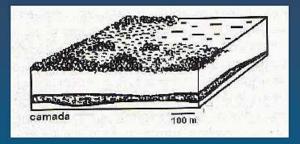
- 1 Barbante
- 2 Pavimento




Concentrações tridimensionais (> espessura de uma concha)


- 1 Pod
- 2 Clump
- 3 Lente




5 - Camada

Feições Paleoecológicas

Monotípica: um único tipo de esqueleto.

^{*}Poliespecífica (formada por espécies diferentes de mesmo esqueleto)

Politípica: vários tipos de esqueleto (Bivalves, corais, braquiópodes...)

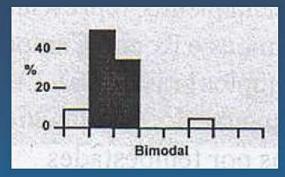
^{*}Monoespecífica (formada por uma única espécie)

Feições Sedimentológicas

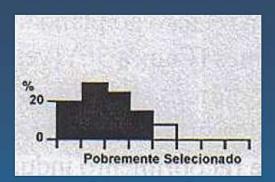
Grau de empacotamento

Densamente empacotada

Fracamente empacotada



Dispersos


Seleção de Tamanho

Bem selecionada

Bimodal

Pouco selecionada

Orientação em planta

Distribuição unimodal

Distribuição bimodal

Distribuição polimodal

Orientação em corte

Plano de acamamento

Considerações importantes

- Time-averaging: mistura temporal em uma concentração fossilífera.
- Retroalimentação tafonômica (taphonomic feedback): acúmulo de restos esqueléticos influenciando nas comunidades viventes.
- Fossil-Lagerstätten: rocha contendo quantitativa e qualitativamente uma rica assembléia fossilífera
- A tafonomia como ferramenta de interpretação do passado
- Compreensão dos processos paleoambientais
- Tafofácies geologia

Para saber mais...

- Holz & Simões (2002) Elementos Fundamentais de Tafonomia. Universidade Federal do Rio Grande do Sul
- Carvalho, I. de S. (2004) Paleontologia. Rio de Janeiro.
 Ed. Interciência.